《经济时报》最近的一份报告提到,宝马利用AWS开发了一个数据中心以提高效率。该报告说:“将培训约5000名BMW员工使用AWS技术来更好地利用数据。”技术的出现在经商过程中带来了明显的变化。大数据和预测分析对行业产生了巨大影响。

Gartner公司对于大数据的定义是,大数据是高容量,高速度以及种类繁多的信息资产,即3V。这些大量复杂数据无法用传统方式处理。大数据用于获取见解,检测威胁,预测趋势以实现最佳生产。

人脑从来没有过无错误的特权。这不是为什么我们更偏向于技术-一个提供完美结果的平台。好吧,事实不同。一切都有自己的风险。大数据也是如此。为了清楚起见,以下看与大数据相关的问题。

准确性

许多人认为,数据越多,准确性越好。这不是真的。大量数据来自各种不完善的来源。这可能导致无组织,不准确的数据或见解。当这些值仅仅是近似值时,我们将失去精度。所有公司都没有能力实时处理大量数据。因此,他们使用采样来分析数据。此过程使用来自云的少量数据样本,并尝试获取见解。这导致不正确的结论和决定。

 数据是否一致?

数据必须一致才能获得正确的见解。数据永远不会是静态的;它一直在变化。由于数据收集来自多个来源,因此保持一致性并不容易。如果数据不一致,用户可能会误会。对于同一查询获得不同的答案可能会导致这种不一致。

  数据算法中的偏见

由于这些数据块来自多个来源,因此并不总是可信的。这些数据离偏差不远。由于人的大脑参与其中,因此这些不是客观价值或信息。某些数据可能包含从其源继承的偏差和错误值。

使用算法进行数据处理也会导致偏差。数据算法中的这些偏见不是一本公开的书。它们仍然被认为是黑匣子,这使我们无法了解其根源和目的。这可能会导致误解。例如,人们可以用各种方式来解释社交媒体语言。如果算法被设计为以性别歧视或种族主义的方式理解它,则会导致错误的见解。这肯定会影响用户,在其他情况下也会影响您的业务成功。

如何使事情变得更好?

所有这些偏见不能使大数据消失。大数据将仍然是有效业务管理的重要方面。因此,它需要设置正确。

•应该改善数据质量和组织。为确保这一点,公司应了解其数据要求并定义相关数据。这些数据应该以易于管理的方式进行分类和存储,以获得有效的结果。

•一切都需要偶尔清洁。应该清除数据以清除脏数据,这些脏数据离完整性很远。这将使我们能够创建一个完整且相关的数据湖。

•更好的治理可以轻松解决数据流和安全问题。例如,SAPDataHub可确保大程度地集成和管理数据库,以产生有效的业务策略。

•为了增加对技术的信任,必须确保对用户的大透明度。更好地理解所涉及的来源,偏见和错误将对客户产生积极影响。更少的操纵和更多的统计证据可以帮助赢得信任。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2023-08-24 09:38:00
大数据资讯 关注县域数据能力建设,抢占产数业务发展先机
2023年《数字中国建设整体布局规划》正式发布,数据能力已成为我国区域发展的底座和创新引擎。 <详情>
2023-08-02 16:29:54
云资讯 Gartner:2022年全球IaaS公有云服务市场增长30%,首次突破1000亿美元
前五名IaaS提供商在2022年占据了80%以上的市场份额。亚马逊以481亿美元的收入和40%的市场份额继续引领全球IaaS市场 <详情>
2023-03-30 11:15:07
云资讯 分布式时代已至,数据如何更有价值?
无论是连通各大集群内大型超大型数据中心,还是连接边缘侧小型、边缘数据中心,分布式云计算都已成为这张算力网络最重要的支撑。在此背景下,云计算步入分布式时代。 <详情>
2023-03-01 19:27:00
市场情报 FlagOpen大模型技术开源体系,开启大模型时代“新Linux”生态
大数据+大算力+强算法=大模型”是当前人工智能发展的主要技术路径。语言大模型ChatGPT成为现象级应用,人工智能进入普及应用的新时期。 <详情>