对很多企业来说,大数据的概念已不陌生,但如何在营销中应用大数据仍是说易行难。其实,作为大数据最先落地也最先体现出价值的应用领域,网络营销的数据化之路已有成熟的经验及操作模式。

一、获取全网用户数据

首先需要明确的是,仅有企业数据,即使规模再大,也只是孤岛数据。在收集、打通企业内部的用户数据时,还要与互联网数据统合,才能准确掌握用户在站内站外的全方位的行为,使数据在营销中体现应有的价值。在数据采集阶段,建议在搜集自身各方面数据形成DMP数据平台后,还要与第三方公用DMP数据对接,获取更多的目标人群数据,形成基于全网的数据管理系统。

大数据

二、让数据看得懂

采集来的原始数据难以懂读,因此还需要进行集中化、结构化、标准化处理,让“天书”变成看得懂的信息。

这个过程中,需要建立、应用各类“库”,如行业知识库(包括产品知识库、关键词库、域名知识库、内容知识库);基于“数据格式化处理库”衍生出来的底层库(用户行为库、URL标签库);中层库(用户标签库、流量统计、舆情评估);用户共性库等。

大数据

通过多维的用户标签识别用户的基本属性特征、偏好、兴趣特征和商业价值特征。

大数据

三、分析用户特征及偏好

将第一方标签与第三方标签相结合,按不同的评估维度和模型算法,通过聚类方式将具有相同特征的用户划分成不同属性的用户族群,对用户的静态信息(性别、年龄、职业、学历、关联人群、生活习性等)、动态信息(资讯偏好、娱乐偏好、健康状况、商品偏好等)、实时信息(地理位置、相关事件、相关服务、相关消费、相关动作)分别描述,形成网站用户分群画像系统。

大数据

四、制定渠道和创意策略

根据对目标群体的特征测量和分析结果,在营销计划实施前,对营销投放策略进行评估和优化。如选择更适合的用户群体,匹配适当的媒体,制定性价比及效率更高的渠道组合,根据用户特征制定内容策略,从而提高目标用户人群的转化率。

大数据

五、提升营销效率

在投放过程中,仍需不断回收、分析数据,并利用统计系统对不同渠道的类型、时段、地域、位置等价值进行分析,对用户转化率的贡献程度进行评估,在营销过程中进行实时策略调整。

对渠道依存关系进行分析:分析推广渠道的构成类型与网站频道、栏目的关联程度(路径图形化+表格展示);

对流量来源进行分析:分析网站各种推广渠道类型的对网站流量的贡献程度;

对用户特征及用户转化进行分析:分析各个类型的推广渠道所带来的用户特征、各推广渠道类型转化效率、效果和ROI。

大数据
大数据

六、营销效果评估、管理

利用渠道管理和宣传制作工具,利用数据进行可视化的品牌宣传、事件传播和产品,制作数据图形化工具,自动生成特定的市场宣传报告,对特定宣传目的报告进行管理。

大数据

七、创建精准投放系统

对于有意领先精准营销的企业来说,则可更进一步,整合内部数据资源,补充第三方站外数据资源,进而建立广告精准投放系统,对营销全程进行精细管理。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党