中国IDC圈1月15日报道:我所处的位置决定我看世界的角度。从这里望去,2016 年的分析领域令人振奋。有史以来,分析领域从未如此重要、如此有趣。

  1. 机器学习在企业生根发芽

机器学习(Machine learning)的历史可以追溯到 1950 年,但直到最近,它都只是精英人才的领域并长期被人忽视。我预言机器学习会就此稳步发展,因为许多大型企业正在接纳机器学习。如今除了研究者和数字时代原住民,企业也在探索如何把机器学习变为生产力。在一些已经规范化的行业,模型解释性较差,曾导致模型难以应用。如今这些行业的从业者使用机器学习,寻找更多创造性的方法,从模型中选择变量,而这些变量之后能由常用工具进一步构建。机器学习从多个学科中获取营养,所以未来预计会产生更多跨学科的兴趣。回想去年 INFORMS 年会的主题,Dimitris Bertsimas 讲“现代优化视野下的统计与机器学习”( Statistics and Machine Learning via a Modern Optimization Lens )。我的同事 Patrick Hall 也对于“为什么是机器学习?为什么是现在?”(Why Machine Learning? Why Now?)这一话题给出了他的看法。

  2. 物联网大潮降温,面对现实

根据 Gartner 公司的新科技周期理论(Hype Cycle)来看,物联网(Internet of Things, IoT)正处在科技周期的顶峰。但在 2016 年我预计物联网这个概念将有所降温,开始面对现实。如何采集是一个很实际的障碍——信息太多了。我的一个同事正在把我们新大楼的HVAC 暖通系统,作为一个物联网测试项目进行分析。这栋楼里到处都是传感器,但获取数据却并不容易。设施部门告诉他这是IT部门的职权,IT部门把他又踢到了制造商那里,因为 HVAC 收集数据之后发送给了制造商。“数据所有权”是一个在逐渐浮现的议题:你生产了数据,却无法获取它。如何证实自己的价值是物联网面对的更大挑战。物联网在企业级的整体生产应用依然有限。物联网给出的承诺无与伦比,所以在 2016 年让我们期待早期使用者们能解决问题,给出答案。

  3. 大数据走出喧嚣,让模型变得丰富

大数据已经走出了喧嚣,产生了实际的价值。如今的建模者可以获取的数据种类前所未有地丰富(例如,非结构数据,地理空间数据,图像,声音),而这些数据使得模型可以变得更加丰富。大数据的另一新进展来自各类竞赛,这些竞赛超越了之前游戏化的形式,通过众包和数据分享产生了实际价值。拿前列腺癌 DREAM 挑战为例,参赛队伍使用四种临床诊断的匿名数据挑战开放的临床研究问题。这些数据来源众多,大部分是第一次公之于众。参赛队伍的数目史无前例,最终的获胜者战胜了之前此领域尖端研究者开发的模型。

  4. 通过分析提高信息安全

随着物联网发展,传感器的广泛使用肯定让数码空间的犯罪分子感到兴奋。他们使用这些设备,用一种缓慢而低调的木马手段进行劫持。许多传统的侦查手段对此无效,因为侦查不再是寻找一个稀有事件的过程,而需要对情境中事件的累积进行理解。跟物联网一样,信息安全面对的一个挑战和数据有关。我预计先进的分析作为追踪数据的手段,能为侦查和预防做出新的贡献。很可惜,本文无法谈论大数据的合作中正在发展出的方法,因为我们不想让坏蛋知道我们是怎么发现它们的。这方面的许多优秀工作都是在高度安全的隔离环境中完成的。不过,2016 年 SAS 和其他各方仍会高度关注信息安全。

  5. 分析驱动着企业与学界加强互动

北卡罗来纳州立大学的高级分析研究所(The Institute for Advanced Analytics, IAA)关注分析领域的硕士项目数量增长。新的硕士项目与日俱增。企业的招聘需求促进了增长,但同时我也看到了它们对于研究的兴趣。越来越多的企业在设立学术扩展部门,并表现出对于研究合作的浓厚兴趣。有时这种兴趣超越合作伙伴关系,转而直接雇佣学界名人。这些学界名人可能是休假期间来工作,或者在学界和企业往返。例如,机器学习顶尖研究者 Yann LeCun 曾在贝尔实验室工作,也曾是纽约大学的教授,曾是建立纽约大学数据科学中心的主管,现在在 Facebook 带领人工智能研究团队。INFORMS(运筹学与管理科学研究协会),通过为学界提供与分析有关的教学材料的方式,支持这种产学互动。2016 年 INFORMS 会为业界提供一个可查询的、分析领域(硕士)项目的数据库以促进双方往来,并提供新的 Associate Certified Analytics Professional 证书来帮助选拔毕业生。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2022-10-11 13:38:11
云资讯 如何将数据分析带到云端
数据,更具体地说是对数据的分析,是这一转变的基础。金融服务公司是最早意识到,更快地获取更深入、更丰富的见解,可以使其比同行具有显著竞争优势的企业之一,尤其是在高 <详情>
2022-08-30 09:41:47
云资讯 亚马逊云科技三种数据分析服务的无服务器功能正式可用
Amazon EMR、Amazon MSK 和 Amazon Redshift的无服务器功能可帮助客户大规模分析数据,而无需配置、扩展或管理底层基础设施 <详情>
2021-12-28 15:10:26
大数据资讯 2022年数据分析的6大趋势
企业数据分析有两种方法。首先是从CRM和ERP等业务应用程序中获取数据,并将其导入数据仓库以提供给BI工具。现在,这些数据仓库正在迁移到云端,采用Snowflake等技术。 <详情>
2021-12-13 18:06:46
大数据应用 建立数据策略的六个关键组成部分
数据策略包括一套在企业中使用数据的长期目标,以及支持这些目标的政策和应用实践。 <详情>
2021-11-29 10:06:02
大数据技术 干货分享:数据分析的6大基本步骤
数据分析就是运用恰当的分析方法,分析所收集的海量资料,并运用高效的分析工具将之归类、归纳,从中提炼出最有价值的资料,总结形成有效结论,挖掘数据大价值的过程。 <详情>