大数据每天都在发展,并成为科技界的热门词汇。我们周围的许多人都在谈论它,但他们知道它的真正含义吗?

大数据分析

大数据只不过是非结构化数据的集合。这些数据不是以特定的格式,因为数据集通常是巨大的,有时是数十兆字节,有时甚至超过了PB级别。大数据这个术语出现之前用的是大型数据库(VLDB),由数据库管理系统(DBMS)进行管理。

大量与商业有关的数据能够有效增加公司的销售与利润。为了做到这一点,我们需要利用大数据分析。那么,大数据分析究竟是什么

大数据分析是研究大量且多样的数据集(即大数据)的过程,从而揭示隐藏的模式,未知的相关性,市场趋势,客户偏好和其他有用信息,这些信息可帮助公司做出更明智的商业决策。通过专业的分析系统和软件,大数据分析可以指明商业收益的方向,比如新的机遇,有效的营销,更好的客户服务,提高运营效率以及竞争优势等等。

此外,通过Elasticsearch搜索,能够更加简单的理解大数据。大数据常常用于网页搜索,日志分析和大数据分析。此外还有许多其他工具,但当中Elasticsearch更受欢迎,因为它易于安装,扩展到数百个节点,无需额外的软件,并且由于其内置的REST API而易于使用。

以下是通过大数据分析将大大受益的十大行业:

1. 银行和证券

通过网络活动监控和自然语言处理程序,监控金融市场,从而减少欺诈性交易。交易委员会正在使用大数据分析监控股票市场,避免非法交易的发生。

2. 通讯和媒体

同时在多个平台(移动,网络和电视)上实时报道世界各地的事件。媒体的一部分,音乐行业使用大数据关注最新的趋势,并通过自动调谐软件创作出流行的曲调。

3. 体育

了解特定地区针对不同活动的收视率模式,并通过分析来监测个人球员和球队的表现。像板球世界杯,FIFA世界杯和温布尔顿国际网球锦标赛的体育赛事均有使用大数据分析。

4. 医疗保健

收集公共卫生数据,从而更快地应对个人健康问题,并掌握新病毒株(如埃博拉病毒)在全球传播的状态。不同国家卫生部门合并使用大数据分析工具,以便在人口普查后进行数据收集。

5. 教育

针对目前快速发展的各种领域,更新和升级相关文献。世界各地的大学均使用大数据来检测和追踪学生和教师的情况,并通过不同科目的出席率分析学生的兴趣喜好。

6. 制造业

通过大数据提高供应链管理,提高生产率。制造企业使用这些分析工具,确保以最佳方式分配生产资源,从而获得最大效益。

7. 保险

通过预测分析处理各种业务,从开发新产品到应对索赔。保险公司使用大数据了解需求最大的政策计划,并产生更多收益。

8. 消费者贸易

预测和管理人员编制以及库存需求。消费者贸易公司通过会员制度,记录会员情况从而发展贸易。

9. 交通运输

制定更好的路线规划,交通监控和物流管理。主要是政府为了避免交通堵塞而设立的。

10. 能源

通过智能电表减少电气泄漏,并帮助用户管理能源使用情况。负荷调度中心使用大数据分析来监测负荷模式,并根据不同的参数分析能源消耗趋势之间的差异,并节约能源。

早期的大数据系统大多用于内部,特别是在收集,组织和分析大量数据的大型组织中。但是,如今许多云平台供应商,诸如Amazon Web Services和微软等已经能够使在云中建立和管理Hadoop集群变得更加容易。逐渐越来越多的公司也开始利用其丰富的数据,进行大数据分析。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2018-01-03 11:29:17
市场情报 2017年终策划:五大锐词带你回顾IT运维这一年
综览2017,作为IT运维领域从业十多年的北塔软件,精心挑选出IT运维领域的五大年度锐词。这些经过重新诠释的语词,浓缩了过去一年中的IT运维技术创新与业界动态,从而帮助你 <详情>
2018-01-03 10:38:24
大数据技术 AI和大数据2017“成长的烦恼”
人工智能和大数据在2017年的发展遇到了以下10个成长的烦恼,包括:人工智能无IQ标准、人工智能延伸边缘、AI嵌入超算和云计算、大数据风口已过、数据保鲜难等等。 <详情>
2017-12-28 15:52:23
市场情报 《2017新科技·新商业年度报告》重磅发布:千亿ABC驱动万亿级新商业市场
12月22日, 30年前,邓小平根据当代科学技术发展的趋势和现状,在全国科学大会上提出了“科学技术是第一生产力”的论断。30年来,这一伟大论断被不断实践和佐证。2017年, <详情>
2017-12-28 10:27:42
大数据应用 数据将主导一切?研究发现53%的公司正在使用大数据分析
研究公司Dresner Advisory Services发现,使用大数据分析公司的比例已经自2015年的17%激增到了2017年的53%。 <详情>
2017-12-28 10:14:00
大数据应用 大数据在金融行业的五大应用与挑战
相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、 <详情>