中国IDC圈4月14日报道,“我希望能和互联网创新公司合作,来打造一个 ‘临床遗传机器医生’,解决罕见遗传病的诊断难题,当然这还需要基因测序公司和临床遗传学家的参与。只要你输入收集到的各种基因型和表型,‘临床遗传机器医生’ 就可以马上帮你做出准确的诊断,并为下一步的处理给出最合理的建议和提示。”

今年3月 底,上海市第一妇婴保健院院长段涛在他的个人微信订阅号“段涛大夫” 里面,发布了一篇院长日记《令人失望的互联网创新》。上面那段话是这篇文章的结尾,也是段涛提出的一个挑战,希望那些有创新基因的公司能够完成这个挑战。

\" data-mce-src=

当 AlphaGo 大放异彩时,人工智能确实带给各个领域太多想象空间。尤其是在医疗领域,当 Watson 机器人在疾病诊断领域的能力已经可以媲美普通医生,它也许值得人们付出更多的金钱、精力以及激情去做更多探索。

故事.版本一

医疗人工智能的基础,是医疗大数据的挖掘和应用。有关医疗大数据,这是这几年互联网医疗领域流传广的故事。虽然每一家创业公司的模式千差万别,但无一例外都会有一条:对大数据的挖掘和应用,虽然关于如何实现的部分往往语焉不详。这充分反映了两个问题:所有人都意识到了医疗大数据开发的价值,但开发的路径却难度很高。

于是,我们听到的第一代医疗大数据的故事就变成了以下这个样子:

①有关数据来源

中国互联网医疗可以说是白手起家,至今为止仍然不受传统医疗体系待见。所以,早期的医疗大数据基本上都只能来自互联网医疗公司自身的积累。这里的 “早期” 既指时间上的早期,又包括开发思路上的早期。那么,早期的数据来源大概有这么几类(欢迎补充):

在线咨询类公司——这类公司既有综合型的,又有垂直型的。数据积累的方式上主要是通过医患在线问诊的方式,建立患者个人的电子健康档案;

智能硬件类公司——纯粹的智能硬件在医疗领域的应用日渐式微,但越来越多的医疗服务开始结合智能硬件,比如血糖、血压、体温、心律等,数据积累方式主要是对用户体征数据的检测;

基因检测类公司——基因检测在近两年日 趋火爆,主要是受到检测成本降低和精准医疗的推动,门槛大大降低,使得越来越多的普通用户能够消费基因检测。

科研工具类公司——虽然与医患资源类公司一样是收集患者的疾病数据,但科研类公司收集数据的形式、应用明显不同,科研机构在数据积累过程中发挥了主导作用。

【寻找下一个金矿④】医疗大数据的苟且与远方

②有关数据应用

在医疗大数据版本一的故事里面,之所以是早期,主要是还是因为开发利用方式的早期。在这个阶段,虽然关于医疗大数据、人工智能已经有了概念,但在此时能接受这样故事的人毕竟还太少,也太遥远。于是,版本一里面应用医疗大数据的方式基本有这么积累:

服务于医疗本身——长期以来,患者个人是不掌握自己的医疗数据的。互联网医疗出现后,用户可以通过手机来收集自己的健康数据,帮助医生更好的了解自身的健康历史;

服务于医药企业——药企对数据的需求既强烈又多元,包括市场营销需求、新药研发需求、应用反馈需求等。因此,鉴于药企买单欲望强烈,很多数据应用商都主动向药企考虑;

服务于保险公司——这一点中美有些差异,美国保险公司对数据的应用主要是对医疗服务质量和费用的控制,而在我国,保险公司对数据的应用则主要是设计新的保险产品。

【寻找下一个金矿④】医疗大数据的苟且与远方

③有关应用现状

其实在版本一的故事里,已经有一些有了很好的应用效果,比如药物警戒,用医疗数据来弥补临床数据的缺陷,及时反馈药品不良反应、治疗效果等;再比如保险控费,用医疗大数据控制服务质量和费用,控制和减少保险欺诈行为等。这些领域之所有比较好的应用,主要是因为药企和保险公司的商业驱动力更强。当然,这也仅是在美国。

虽然我们前面罗列了不少有关医疗数据的来源和积累,但实际当中,这些案例都或多或少存在着问题。甚至由于这些问题的存在,版本一里面这些比较浅层次的数据应用都还处于非常遥远的阶段。

数据的完整和有效性——互联网医疗毕竟是新兴事物,用户有接受程度和使用习惯的问题,而且硬件设备也存在功能和精准度的问题。这使得数据收集面临着不完整且缺乏连续性的问题,而且大多数硬件设备没有取得医疗资质,采集的数据也无法做医疗级应用。

数据处于割裂的状态——互联网医疗产品主要收集的是患者在医院的健康数据,而对医院内的数据鞭长莫及。加上医院与互联网医疗无法打通,这导致了医疗数据在院内院外割裂存在的状况。而且由于医院本身信息孤岛的问题,患者在不同医院求医的数据也是碎片化存在。

数据规模仍然非常小——作为大数据应用,目前的医疗数据采集规模根本达不到 “大” 的程度。一个是很多创业公司的数据都是从头积累,再一个是市场认知度仍然有限,最典型的就是基因检测,很多公司的样本量还处在几十个、几百个的水平。这使得目前的医疗数据基本无法实现商业化。

当然还有一个问题,段院长在他的文章里也指出了,就是医疗大数据并没有被认真对待,或者说挂羊头卖狗肉。我国的大多数互联网医疗公司打的仍然是医院号源的主意,仍然是一种快速变现的心态,也无怪乎令人感叹,“我们多数的移动医疗创新公司还在拼命的靠补贴靠地推在拉用户,在做挂号黄牛的生意,真的令人很失望。”

虽然大数据已经变得更像一句营销术语,但是它仍有巨大的潜力没有被挖掘出来。不过,得先把数据获取这个大麻烦解决了。

企业在面对数据的时候,比知道怎么处理更多的情况,是在这些数据里漫无目的的游泳。遗憾的是,太多的公司将这种现象与大数据本身关联起来。从技术角度来说,大数据是非常具体的一件事――结构化数据(企业的专有信息)与非结构化数据(社交媒体数据流和政府新闻源之类的公共数据源)的结合体。

\" data-mce-src=

如果你将非结构化数据覆盖在结构化数据之上,通过分析软件将其可视化,你就会得到过去从未有过的洞察力――预测产品销售、更精准地目标用户、新的市场机遇,等等。

大数据不再像过去几年一样,受限于工具缺乏的问题。那时候搞大数据意味着团队里必须有数据科学家,还会被R和Hadoop之类的开源工具搞得心烦意乱。

如今,多少公司都争着帮你可视化大数据:从Tableau、Qlik、TIBCO和MicroStrategy之类的专业公司,到微软、IBM、SAP和甲骨文之类提供端到端服务的厂商,不一而足。

不过,据上周出席奥兰多中级市场CIO论坛/中级市场首席营销官(CMO)论坛的IT主管们声称,许多公司在大数据分析中最头疼的问题,其实是如何获取数据。

一位CIO说:“我们IT部门的大问题,是我们如何才能将数据获取进来,这件事非常麻烦。”

这种说法也得到了相关数据的证实。

数据集成公司Xplenty开展的一项调查声称,三分之一的商业智能专业人员把50%至90%的时间,花在了清理原始数据和将数据录入到公司的数据平台的准备工作上。这种现象的原因,可能与只有28%的公司认为自己能从数据中获得战略性价值有很大关系。

数据清理的问题还包括,眼下IT行业许多最抢手的专业人员,正在花大量时间处理这项让人晕头转向的工作:在分析数据之前先筛选并组织整理数据集。

这显然对于数据的可扩展性非常不利,也严重限制了大数据的潜力。随着物联网不断发展,收集更多的数据对我们来说将越来越容易,这个问题只会变得更严峻。

有三种可能的方法有望解决这个问题:

1.大数据分析软件不断完善――许多这些公司在过去五年时一直投入大量精力在大数据领域,减轻数据清理环节压力的工具不太可能在短期内出现重大突破,但有望实现逐步改进。

2.数据准备人员成为数据科学家的助手――正如律师助理帮助律师处理重要的基础工作,数据准备人员也会帮助数据科学家处理基本上同样的底层任务。我们已经在某种程度上看到了这一幕。不妨阅读TechRepublic的这篇文章:《“数据标记”是人工智能时代的新新蓝领工作吗?》(http://www.techrepublic.com/article/is-data-labeling-the-new-blue-collar-job-of-the-ai-era/)

3. 利用人工智能清理数据――另一种可能性是,用来清理、筛选和分类数据的软件和算法将被编写出来。这一幕极有可能出现,但是我们还应预料到,这也不是“银弹”。微软、IBM和亚马逊正在致力于用人工进行软件无法处理的数据标记工作――而这正是全球自动化和算法领域的三巨头。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2022-08-10 09:19:00
运营商 运营商大数据平台敏感数据管控机制及实现
通过建立大数据平台敏感数据管控机制,可以满足相关大数据安全规范和大数据安全审计的要求。 <详情>
2022-06-28 11:43:53
大数据应用 串联产业链供应链 税收大数据助企有效购销
下一步,税务部门还将进一步发挥税收大数据作用,持续优化“全国纳税人供应链查询”功能,强化对各地税务部门的指导。 <详情>
2022-06-08 10:21:00
大数据应用 大数据应用广发展快
近年来,中国推动大数据产业发展取得明显成效,产业规模快速增长。 <详情>
2022-05-06 10:12:00
大数据资讯 西安:大数据赋能法律监督推动校园安全
陕西省人民检察院西安铁路运输分院建立法律监督模型运用大数据获取线索,成功办理了两起校园周边售卖烟酒、“三无产品”盲盒侵害未成年人权益的公益诉讼案件。 <详情>
2022-04-21 11:37:17
云技术 【科技助力】云端加“沪”,上海移动“云战力”助力坚决打赢疫情防控大仗硬仗
面向下阶段,上海移动已完成政务云的资源和负载的前瞻性评估,做好云网资源储备和调度的动态调整。 <详情>