什么是数据科学(Data Science)?
随着科技的发展,人类社会拥有数据规模增长很快,每时每刻、从天到地都有大量数据被产生和存储下来。数据科学则通过对数据进行分析,帮助决策。
比如这么多家社交网站,一天到晚从你的定位到点击了什么连接,各种鸡毛蒜皮的数据都存着,他们不怕数据多,就怕有什么没记录下来的。数据量的增大和数据的多样化也促进了很多公司、政府进行数据分析来支持商务决策(data driven decision making)。
比如沃尔玛分析人员发现,欧美的主妇通常会要求丈夫下班后顺便给孩子买尿布回来。而这些大老爷们也顺便带几罐啤酒回来。沃尔玛就将啤酒和尿布作为组合放在一起,尿布的销售,促成了啤酒的热卖。
从这张图表中,我们可以发现各行各业都可以从大数据产业联盟的数据采集,数据组织,数据分析,数据应用,数据投资的方方面面进行淘金。互联网企业,运营商企业,政府和行业用户,应用开发商,数据云服务商,咨询服务商将形成一套完整的大数据生态环境。大数据正在形成一条新的产业链。
大数据专业就业方向也是我们所关心的,都有哪些职位是对口的呢?
事实上,大到世界500强,BAT这样的公司,小到创业公司,他们都需求数据人才。目前,大数据人才数量较少,因此大多数公司的数据部门一般都是扁平化的层级模式,大致分为数据分析师、资深研究员、部门总监3个级别。
大公司可能按照应用领域的维度来划分不同团队,而在小公司则需要身兼数职。有些特别强调大数据战略的互联网公司则会另设高职位—如阿里巴巴的首席数据官。这个职位的大部分人会往研究方向发展,成为重要数据战略人才。另一方面,大数据工程师对商业和产品的理解,并不亚于业务部门员工,因此也可转向产品部或市场部,乃至上升为公司的高级管理层。
职业发展主要分为3个方向:
1、大数据开发方向; 所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向; 所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向;对应岗位:大数据运维工程师;
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了 8K 以上,工作1年月薪可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。这三个方向精通任何方向之一者,均会前(钱)途无量。
相关阅读: